您的当前位置: 首页 > 搜索学院
GEO:互联网大数据技术蓝皮书之隐私保护
发布时间:2020-12-25

一、概述

“大数据”无疑是近年来最热门的科技名词,“大数据广告”、“大数据电商”、“大数据金融”、“大数据医疗”甚至是“大数据农业”,这些“大数据”令人眼花缭乱。“大数据”给产业带来了巨大的变革,不但改变了一些行业惯有的思维方式,同时也带来了很多争议,用户隐私安全便是首当其冲的一个。

二、什么是隐私数据

研究用户隐私保护技术,首先要明确什么是用户隐私数据,GEO对用户隐私数据做了如下分类:

1、 PII (Personal Identifiable Information),也就是能够明确标识一个人身份的数据,比如用户的姓名、手机号、身份证号、电子邮箱、住址等。

2、 用户相关信息,比如用户的年龄、性别、公司、职业等信息。这类信息虽然不能直接标识一个用户,但是把这些条件组合在一起,还是有相当的隐私风险的。比如“年龄36岁,在天恒大厦工作,担任集奥聚合GEO的架构师”,通过这些条件很容易定位出一个人,这就是所谓的“Quasi-identifier”。

3、 用户属性标签,为了解决“Quasi-identifier”的问题,很多人会把用户信息进行一定的泛化,比如上面的例子可以泛化成“30-40岁,在东直门附近工作,IT行业,喜欢汽车”,相较之下这样会显得模糊一些,也就是常说的“k-anonymity”。但严格来说,这些数据还是会涉及用户隐私,并非绝对安全。

三、国内外相关法律法规

在用户隐私安全保护方面,国外起步较早,形成了许多法律法规,国内目前还处于起步阶段:

四、隐私保护技术

 

1、 统一标识,不采用任何Cookie、PII或PII加密后的数据作为用户标识,而是对用户随机编号,我们称之为User ID。该ID没有任何物理意义,仅仅是一个编号,不同来源的数据采取统一的User ID进行交换,有效解决PII问题。

2、 流处理技术,对于数据本身存在的用户隐私数据,只要存储在一个物理介质上的就是不安全的。因此,技术平台对这类数据的过滤采用了流处理技术,脱密前的原始隐私数据不会保存,即使系统被黑客攻破也不会导致隐私泄露。

3、 标签化处理,用户标签主要有两类,一类是用户原始标签,一类是广告标签。原始标签保存在经过授权的第一方或第三方数据库中,广告标签保存在广告投放系统中。广告标签在第一方或第三方数据库中计算得到,也就是说我们不知道每个人是谁,也没有保存个人身份和兴趣标签,我们只知道该给他投放什么广告。

4、 自动处理技术,广告标签计算完全凭借自身的自动算法实现,没有人为介入,整个流程不可逆,完全是一个黑盒子,避免了人为原因造成的风险。

5、 加密技术,采用三个层架实现数据加密处理:网络层、数据汇聚层和应用层。网络层主要通过传统的防火墙、IDS等方式实现数据通道安全;数据汇聚层通过专有硬件实现数据的加密、过滤和去隐私化处理;应用层主要从分布式存储、数据交换、业务模型等方面进行数据加密,保证系统的安全性。

6、 系统管理能力,系统的安全离不开有效的监控和管理。专门开发了具备多级监控、调度和管理能力的iManager系统,能有效管理全国几十个数据中心,配合相应的管理制度,最大限度的保证隐私数据安全。

7、 用户可管理性,用户可以了解自己的哪些数据被用作了哪些用途,并且用户可以要求系统停止使用这些数据。比如用户可以要求终止个性化广告展示服务。这个能力只有基于非Cookie技术才能实现。我们都知道Cookie的生命周期短,用户必须不断告知系统停止服务,然而非Cookie技术就不存在这个问题。

Copyright © 2012-2021(tech.moresdk.com) 版权所有 Powered by 万站群

本站部份内容来源自网络,文字、素材、图片版权属于原作者,本站转载素材仅供大家欣赏和分享,切勿做为商业目的使用。

如果侵害了您的合法权益,请您及时与我们,我们会在第一时间删除相关内容!